Lunar Calibration Applications for CLARREO Pathfinder

Tom Stone — USGS Flagstaff

CLARREO Pathfinder Science Workshop 03 November 2021

CLARREO Pathfinder will observe the Moon as a secondary mission objective

Potential applications of CPF lunar measurements:

- lunar inter-calibration
 - using the Moon as a common target
- improved knowledge of lunar reflectance
 - for advancing development of lunar models

The radiometric quantity used for lunar calibration is spatially integrated irradiance

- requires observing the complete Moon disk
 - to be accomplished with CPF RS by scanning
- adds complexity to deriving measurements from line-scanning sensors

CLARREO Pathfinder will observe the Moon as a secondary mission objective

Potential applications of CPF lunar measurements:

- lunar inter-calibration
 - using the Moon as a common target
- improved knowledge of lunar reflectance
 - for advancing development of lunar models

The radiometric quantity used for lunar calibration is spatially integrated irradiance

- requires observing the complete Moon disk
 - to be accomplished with CPF RS by scanning
- adds complexity to deriving measurements from line-scanning sensors

The accuracy achievable for lunar irradiance measurements by CPF <u>remains to be demonstrated</u>

Technical issue — scan oversampling

- CPF Moon images will be composed of concatenated scan lines
- The 2-axis gimbal CPF pointing system means Moon scans will trace a curved path over the lunar disk

This leads to different oversampling for each lunar image pixel

- oversampling correction is a matrix operation
- the algorithm for generating the oversampling matrices is still in development

• The oversampling factor is a critical component of lunar irradiance measurements from images: $E = 0 \sum_{n=1}^{N} \frac{1}{2} L$

$$E_{ ext{meas}} = \Omega_{ ext{p}} \sum\limits_{i}^{N} rac{1}{\eta_{i}} \, L_{i}$$

$$\Omega_{\rm p} = {
m pixel IFOV} \ ({
m solid angle})$$

 $\eta_i = {
m pixel oversampling factor}$

$$L_i = pixel radiance$$

N = # of pixels on Moon

- Each term on the right carries an uncertainty
 - radiometric calibration applies only to the pixel radiances L_i
 - combination of terms means lunar irradiance measurements cannot reach the same level of accuracy as the sensor radiometric calibration
- TBD: the level of uncertainty in CPF oversampling factors η_i
- Potential to develop cutting-edge techniques for measuring lunar irradiance

Application: lunar inter-calibration

- The Moon can be observed as a common target for multiple sensors

 the lunar surface reflectance has exceptional photometric stability, better than 10⁻⁸ yr⁻¹
- Lunar inter-cal requires using a lunar model
 - the apparent lunar brightness changes continuously
 - relatively rapidly when viewed from orbit
 - all Moon observations have different geometries, thus different irradiances
- Inter-calibration of sensors to CPF using the Moon is technically feasible
 - CPF Science Planning System (SPS) can predict opportune observation events
 - uncertainties in lunar model predictions are reduced for closely matched view geometries

Application: lunar reference database

- The lunar calibration reference is a predictive model – to accommodate the continuously changing lunar brightness
- Lunar model development follows from extensive radiometric characterization measurements
 - minimum 3 years required to sample geometry variations
 - USGS ROLO observations spanned more than 8 years
 - dedicated observatory in Flagstaff, AZ
- Advances in lunar modeling need a new collection of high-accuracy measurements

ROLO telescopes zenith-pointed at dusk

- to achieve absolute lunar calibration with sub-percent uncertainty
- Numerous opportunities for CPF to view the Moon are anticipated
 - potential to build up a substantial database of lunar irradiance measurements

Thank You!

